DNA Repair Pathway Selection Caused by Defects in TEL1, SAE2, and De Novo Telomere Addition Generates Specific Chromosomal Rearrangement Signatures

نویسندگان

  • Christopher D. Putnam
  • Katielee Pallis
  • Tikvah K. Hayes
  • Richard D. Kolodner
چکیده

Whole genome sequencing of cancer genomes has revealed a diversity of recurrent gross chromosomal rearrangements (GCRs) that are likely signatures of specific defects in DNA damage response pathways. However, inferring the underlying defects has been difficult due to insufficient information relating defects in DNA metabolism to GCR signatures. By analyzing over 95 mutant strains of Saccharomyces cerevisiae, we found that the frequency of GCRs that deleted an internal CAN1/URA3 cassette on chrV L while retaining a chrV L telomeric hph marker was significantly higher in tel1Δ, sae2Δ, rad53Δ sml1Δ, and mrc1Δ tof1Δ mutants. The hph-retaining GCRs isolated from tel1Δ mutants contained either an interstitial deletion dependent on non-homologous end-joining or an inverted duplication that appeared to be initiated from a double strand break (DSB) on chrV L followed by hairpin formation, copying of chrV L from the DSB toward the centromere, and homologous recombination to capture the hph-containing end of chrV L. In contrast, hph-containing GCRs from other mutants were primarily interstitial deletions (mrc1Δ tof1Δ) or inverted duplications (sae2Δ and rad53Δ sml1Δ). Mutants with impaired de novo telomere addition had increased frequencies of hph-containing GCRs, whereas mutants with increased de novo telomere addition had decreased frequencies of hph-containing GCRs. Both types of hph-retaining GCRs occurred in wild-type strains, suggesting that the increased frequencies of hph retention were due to the relative efficiencies of competing DNA repair pathways. Interestingly, the inverted duplications observed here resemble common GCRs in metastatic pancreatic cancer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mitotic checkpoint function in the formation of gross chromosomal rearrangements in Saccharomyces cerevisiae.

The accumulation of gross chromosomal rearrangements (GCRs) is characteristic of cancer cells. Multiple pathways that prevent GCRs, including S-phase cell cycle checkpoints, homologous recombination, telomere maintenance, suppression of de novo telomere addition, chromatin assembly, and mismatch repair, have been identified in Saccharomyces cerevisiae. However, pathways that promote the formati...

متن کامل

Cdc73 suppresses genome instability by mediating telomere homeostasis

Defects in the genes encoding the Paf1 complex can cause increased genome instability. Loss of Paf1, Cdc73, and Ctr9, but not Rtf1 or Leo1, caused increased accumulation of gross chromosomal rearrangements (GCRs). Combining the cdc73Δ mutation with individual deletions of 43 other genes, including TEL1 and YKU80, which are involved in telomere maintenance, resulted in synergistic increases in G...

متن کامل

Regulation of genome stability by TEL1 and MEC1, yeast homologs of the mammalian ATM and ATR genes.

In eukaryotes, a family of related protein kinases (the ATM family) is involved in regulating cellular responses to DNA damage and telomere length. In the yeast Saccharomyces cerevisiae, two members of this family, TEL1 and MEC1, have functionally redundant roles in both DNA damage repair and telomere length regulation. Strains with mutations in both genes are very sensitive to DNA damaging age...

متن کامل

Saccharomyces cerevisiae chromatin-assembly factors that act during DNA replication function in the maintenance of genome stability.

Some spontaneous gross chromosomal rearrangements (GCRs) seem to result from DNA-replication errors. The chromatin-assembly factor I (CAF-I) and replication-coupling assembly factor (RCAF) complexes function in chromatin assembly during DNA replication and repair and could play a role in maintaining genome stability. Inactivation of CAF-I or RCAF increased the rate of accumulating different typ...

متن کامل

High rates of "unselected" aneuploidy and chromosome rearrangements in tel1 mec1 haploid yeast strains.

The yeast TEL1 and MEC1 genes (homologous to the mammalian ATM and ATR genes, respectively) serve partially redundant roles in the detection of DNA damage and in the regulation of telomere length. Haploid yeast tel1 mec1 strains were subcultured nonselectively for approximately 200 cell divisions. The subcultured strains had very high rates of chromosome aberrations: duplications, deletions, an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2014